AN ALDOL-TYPE REACTION OF ACTIVE METHYL GROUPS OF NITROGEN-CONTAINING HETEROAROMATIC COMPOUNDS

Hiroshi HAMANA* and Tsutomu SUGASAWA
Shionogi Research Laboratories, Shionogi & Co., Ltd.,
Fukushima-ku, Osaka 553

Active methyl groups of nitrogen-containing heteroaromatic compounds react with benzaldehydes in the presence of 9-BBN triflate and diisopropylethylamine in dichloromethane to give the corresponding aldol-type products under mild conditions.

Aldol-type reactions of "active methyl groups" of nitrogen-containing sixmembered heteroaromatic compounds such as 2-picoline 1 with benzaldehyde 2 proceed by heating with water in sealed tubes at 140 °C¹⁾ or in the presence of strong base like organolithium compounds, 2 giving 2-methylpyridylphenyl carbinols 4. Furthermore, since metalation of five-membered heteroaromatic compounds such as 2-methylthiazol 5 and 2-methyl-4-phenyloxazole 6 with n-butyllithium proceed predominantly at the C-5 position, corresponding aldoltype products like 8 and 10 are difficult to obtain under these conditions (Scheme). We report here the reaction of these active methyl groups of hetero-

aromatic compounds with benzaldehydes in the presence of 9-BBN triflate⁶⁾ and disopropylethylamine in dichloromethane to give the corresponding aldol products.

In the typical procedure for the reaction of 2-picoline 1 and benzaldehyde 2, 9-BBN triflate (1.0 mmol) and a solution of 2 (1.0 mmol) in dichloromethane (2.0 ml) containing diisopropylethylamine (1.2 mmol) were added successively to a stirred solution of 1 (1.0 mmol) in dichloromethane (2.0 ml) at -78 °C under argon. After the solution had been stirred at 20 °C 17 h, pH 7 phosphate buffer (3.0 ml) was added, and the mixture was warmed up to 0 °C under stirring. The organic layer was separated, and the water layer was extracted with dichloromethane. The combined dichloromethane extract was stirred with 30% H_2O_2 (1.0 ml) in methanol (3.0 ml) at room temperature for 2 h. After evaporation of methanol under reduced pressure, the mixture was extracted with ether. The ether phase was washed successively with 5% NaHCO₃ and saturated brine, and the ether layer was dried (MgSO₄) and concentrated. The residue was purified by chromatography (SiO₂, 60 Pre-packed column A, Merck A. G.; benzene:ethyl acetate, 10:1) giving 2-methylpyridylphenyl carbinol 4, 40 × 41, 42 × 43.

Details of the reaction of 1 with benzaldehydes are given in Table 1. Benzaldehydes having electron-withdrawing groups gave better yields (Runs 2 to 5) than those having electron-donating groups (Runs 6 to 8). Similar reactions of active methyl groups of various nitrogen-containing heteroaromatic compounds with 2 were carried out as shown in Table 2. The sharp contrast between Runs 2 and 3 may be attributable to apparent double bond fixation 7) of the starting materials. The clear distinction from the reaction using strong base arises with 2-methylthiazol 5 and 2-methyl-4-phenyloxazole 6 (Runs 4 and 5). Namely, whereas the reactions of 5 and 6 with 2 in the presence of n-butyllithium occur predominantly at the C-5 position, those of 5 and 6 with 2 using 9-BBN triflate and diisopropylethylamine occur exclusively at the 2-methyl groups to give aldoltype products such as 8 and 10 (Scheme). The results of the reactions of sixmembered heteroaromatic compounds containing two nitrogens with benzaldehyde 2 are described in Runs 8 to 10. In this series, 2 mol equivalents of 9-BBN triflate is necessary to complete the reaction. In the case of 3-methylpyridazine, the negative result may be due to the steric hindrance of the 3-methyl group and alkyl substituents of 9-BBN triflate first attached to the N-1 position.

Table 1. Aldol-type Reaction of 2-Picoline with Benzaldehydes a)

Run	Х	Yield (%)	Mp (°C)	Run	Х	Yield (%)	Mp (°C)
1	Н	78	110	5	p-Cl	61	135
2	p-NO ₂	54	168	6	p-CH ₃	51	93
3	o-Cl	85	95.5 ^{b)}	7	p-OCH ₃	14	103
4	m-Cl	69	102	8	$p-N(CH_3)_2$	0	

a) All products exhibited spectral data and elementary analysis in accord with the assigned structures. b) Mp of p-nitrobenzoyl derivative.

Table 2. Aldol-type Reaction of Nitrogen-Containing Heteroaromatics with Benzaldehyde^{a)}

Run	Heteroaromatic	Yield	Mp (°C)	Run	Heteroaromatic	Yield	Mp (°C)
		(%)				(%)	
1	OO CH3	88 ^b)	127	6	O CH3	85	161
2	© CH ₃	79	113	7	© CH ₃	83	155
3	© CH₃	0		8	€N CH3	₅₄ d,e)	89
4	S CH3	77	104 ^{C)}	9	NON CH ₃	89 ^d)	91
5	Ph_NCH ₃	70	112.5	10	CH ₃	0	

a) All products exhibited spectral data and elementary analysis in accord with the assigned structures. b) Contained the dehydrated aldol (15%). c) Mp of p-nitrobenzoyl derivative. d) 2 mol equivalent of 9-BBN-OTf was used. e) Contained the dehydrated aldol (59%).

In summary, our method offers an aldol-type reaction of active methyl groups of nitrogen-containing heteroaromatic compounds with benzaldehydes which proceeds under very mild conditions, although the reaction intermediate including the aminoboran moiety like 3 could not be verified spectrometrically or by isolation. Attempt to apply this reaction to aliphatic aldehyde or ketone was unsuccessful.

References

- 1) B. D. Shaw and E. A. Wagstaff, J. Chem. Soc., 1933, 77.
- (a) A. D. Cale, Jr., R. W. McGinnis, and P. C. Teague, J. Org. Chem., <u>25</u>, 1507 (1960).
 (b) E. M. Kaiser, G. J. Bartling, W. R. Thomas, S. B. Nichols, and D. R. Nash, J. Org. Chem., <u>38</u>, 71 (1973).
- 3) J. Crousier and Y. Metzger, Bull. Soc. Chim. France, 1967, 4134.
- 4) G. Theilig, Chem. Ber., 86, 96 (1953).
- 5) Mp of p-nitrobenzoyl derivative, 135 °C. Spectral data are consistent with the assigned structure.
- 6) T. Inoue, T. Uchimaru, and T. Mukaiyama, Chem. Lett., 1977, 153.
- 7) L. A. Paquette, "Principles of Modern Heterocyclic Chemistry," W. A. Benjamin, I.N.C. 1968, p 274 and 294.

(Received December 21, 1982)